Toward Net-Zero Energy Retrofitting: Building-Integrated
In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV)
Vacuum integrated photovoltaic (VPV) curtain walls, which combine the power generation ability of PV technology and the excellent thermal insulation performance of vacuum technology, have attracted widespread attention as an energy-efficient technology.
After sensitivity analysis of the cost of photovoltaic curtain walls and the efficiency of solar panels, it was found that as the cost increases, the economy of photovoltaic curtain walls gradually deteriorates, and improving the efficiency of solar panels can improve the cost-effectiveness ratio of each facade.
Xiong et al. [ 31] develops a power model for Photovoltaic Curtain Wall Array (PVCWA) systems in building complexes and identifies optimal configurations for mitigating shading effects, providing valuable insights for the application of PVCWA systems in buildings.
Additionally, smart technologies allow for real-time monitoring and data collection, enabling building operators to optimize building performance and maintenance. With these advancements, curtain wall glazing is becoming an intelligent and sustainable solution for modern architecture.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET