Folie 1
Total and single-cell voltages for the 1st and 90th cycle of charge/discharge cyclisation with the ten-cell stack. Capacity as well as coulombic (CE), voltaic (VE) and energy efficiencies (EE)
The history of zinc-based flow batteries is longer than that of the vanadium flow battery but has only a handful of demonstration systems. The currently available demo and application for zinc-based flow batteries are zinc-bromine flow batteries, alkaline zinc-iron flow batteries, and alkaline zinc-nickel flow batteries.
Neutral zinc–iron flow batteries (ZIFBs) remain attractive due to features of low cost, abundant reserves, and mild operating medium. However, the ZIFBs based on Fe (CN) 63– /Fe (CN) 64– catholyte suffer from Zn 2 Fe (CN) 6 precipitation due to the Zn 2+ crossover from the anolyte.
Benefiting from the uniform zinc plating and materials optimization, the areal capacity of zinc-based flow batteries has been remarkably improved, e.g., 435 mAh cm-2 for a single alkaline zinc-iron flow battery, 240 mAh cm -2 for an alkaline zinc-iron flow battery cell stack, 240 mAh cm -2 for a single zinc-iodine flow battery .
Since its proposal in 2006, the Zinc–Nickel single flow battery has made significant advancements in large-scale domestic and international production. The battery has undergone extensive research and testing, including principle verification and small-scale pilot tests, resulting in a battery cycle life that exceeds 10,000 cycles.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET