Battery Energy Storage for Electric Vehicle Charging Stations
Battery energy storage systems can enable EV fast charging build-out in areas with limited power grid capacity, reduce charging and utility costs through peak shaving, and boost energy
Battery energy storage systems can enable EV fast charging build-out in areas with limited power grid capacity, reduce charging and utility costs through peak shaving, and boost energy storage capacity to allow for EV charging in the event of a power grid disruption or outage.
The hosts of the battery-buffered rural EV charging station will never incur a utility bill for more than 100 kW of demand charges. Without battery energy storage, a comparable 600-kW DCFC station could potentially incur 600 kW of demand charges, which would result in higher utility bills.
For another example, review the Joint Offce of Energy and Transportation's (Joint Offce's) technical assistance case study Grid-Constrained Electric Vehicle Fast Charging Sites: Battery-Buffered Options. A battery energy storage system can help manage DCFC energy use to reduce strain on the power grid during high-cost times of day.
1NREL prepared a set of reference tables that provide recommended minimum energy storage (kWh) capacity for a 150kW battery-buffered corridor DCFC station at combinations of grid-supported power (kW) and Design Day charging demand (Appendix: Reference Tables). This approximation is derived from these output tables.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET